Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system

使用新型 pH 响应型可激活细胞穿透肽修饰脂质体系统增强基于 siRNA 的癌症治疗

阅读:8
作者:Bai Xiang, Xue-Li Jia, Jin-Long Qi, Li-Ping Yang, Wei-Hong Sun, Xiao Yan, Shao-Kun Yang, De-Ying Cao, Qing Du, Xian-Rong Qi

Abstract

As a potent therapeutic agent, small interfering RNA (siRNA) has been exploited to silence critical genes involved in tumor initiation and progression. However, development of a desirable delivery system is required to overcome the unfavorable properties of siRNA such as its high degradability, molecular size, and negative charge to help increase its accumulation in tumor tissues and promote efficient cellular uptake and endosomal/lysosomal escape of the nucleic acids. In this study, we developed a new activatable cell-penetrating peptide (ACPP) that is responsive to an acidic tumor microenvironment, which was then used to modify the surfaces of siRNA-loaded liposomes. The ACPP is composed of a cell-penetrating peptide (CPP), an acid-labile linker (hydrazone), and a polyanionic domain, including glutamic acid and histidine. In the systemic circulation (pH 7.4), the surface polycationic moieties of the CPP (polyarginine) are "shielded" by the intramolecular electrostatic interaction of the inhibitory domain. When exposed to a lower pH, a common property of solid tumors, the ACPP undergoes acid-catalyzed breakage at the hydrazone site, and the consequent protonation of histidine residues promotes detachment of the inhibitory peptide. Subsequently, the unshielded CPP would facilitate the cellular membrane penetration and efficient endosomal/lysosomal evasion of liposomal siRNA. A series of investigations demonstrated that once exposed to an acidic pH, the ACPP-modified liposomes showed elevated cellular uptake, downregulated expression of polo-like kinase 1, and augmented cell apoptosis. In addition, favorable siRNA avoidance of the endosome/lysosome was observed in both MCF-7 and A549 cells, followed by effective cytoplasmic release. In view of its acid sensitivity and therapeutic potency, this newly developed pH-responsive and ACPP-mediated liposome system represents a potential platform for siRNA-based cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。