Crystal Structure of H227A Mutant of Arginine Kinase in Daphnia magna Suggests the Importance of Its Stability

水蚤精氨酸激酶 H227A 突变体的晶体结构表明其稳定性的重要性

阅读:5
作者:Da Som Kim, Kiyoung Jang, Wan Seo Kim, Moonhee Ryu, Jung Hee Park, Yong Ju Kim

Abstract

Arginine kinase (AK) plays a crucial role in the survival of Daphnia magna, a water flea and a common planktonic invertebrate sensitive to water pollution, owing to the production of bioenergy. AK from D. magna (DmAK) has four highly conserved histidine residues, namely, H90, H227, H284, and H315 in the amino acid sequence. In contrast to DmAK WT (wild type), the enzyme activity of the H227A mutant decreases by 18%. To identify the structure-function relationship of this H227A mutant enzyme, the crystal 3D X-ray structure has been determined and an unfolding assay using anilino-1-naphthalenesulfonic acid (ANS) fluorescence has been undertaken. The results revealed that when compared to the DmAK WT, the hydrogen bonding between H227 and A135 was broken in the H227A crystal structure. This suggests that H227 residue, closed to the arginine binding site, plays an important role in maintaining the structural stability and maximizing the enzyme activity through hydrogen bonding with the backbone oxygen of A135.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。