A phosphorylation signal activates genome-wide transcriptional control by BfmR, the global regulator of Acinetobacter resistance and virulence

磷酸化信号激活 BfmR 的全基因组转录控制,BfmR 是不动杆菌耐药性和毒力的全局调节器

阅读:7
作者:Nicole Raustad, Yunfei Dai, Akira Iinishi, Arpita Mohapatra, Mark W Soo, Everett Hay, Gabrielle M Hernandez, Edward Geisinger

Abstract

The nosocomial pathogen Acinetobacter baumannii is a major threat to human health. The sensor kinase-response regulator system, BfmS-BfmR, is essential to multidrug resistance and virulence in the bacterium and represents a potential antimicrobial target. Important questions remain about how the system controls resistance and pathogenesis. Although BfmR knockout alters expression of >1000 genes, its direct regulon is undefined. Moreover, how phosphorylation controls the regulator is unclear. Here, we address these problems by combining mutagenesis, ChIP-seq, and in vitro phosphorylation to study the functions of phospho-BfmR. We show that phosphorylation is required for BfmR-mediated gene regulation, antibiotic resistance, and sepsis development in vivo. Consistent with activating the protein, phosphorylation induces dimerization and target DNA affinity. Integrated analysis of genome-wide binding and transcriptional profiles of BfmR led to additional key findings: (1) Phosphorylation dramatically expands the number of genomic sites BfmR binds; (2) DNA recognition involves a direct repeat motif widespread across promoters; (3) BfmR directly regulates 303 genes as activator (eg, capsule, peptidoglycan, and outer membrane biogenesis) or repressor (pilus biogenesis); (4) BfmR controls several non-coding sRNAs. These studies reveal the centrality of a phosphorylation signal in driving A. baumannii disease and disentangle the extensive pathogenic gene-regulatory network under its control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。