Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome

腺嘌呤碱基编辑挽救哈钦森-吉尔福德早衰综合征组织工程血管模型中的致病表型

阅读:1
作者:Nadia O Abutaleb, Xin D Gao, Akhil Bedapudi, Leandro Choi, Kevin L Shores, Crystal Kennedy, Jordyn E Duby, Kan Cao, David R Liu, George A Truskey

Abstract

The rare, accelerated aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) is commonly caused by a de novo c.1824 C > T point mutation of the LMNA gene that results in the protein progerin. The primary cause of death is a heart attack or stroke arising from atherosclerosis. A characteristic feature of HGPS arteries is loss of smooth muscle cells. An adenine base editor (ABE7.10max) corrected the point mutation and produced significant improvement in HGPS mouse lifespan, vascular smooth muscle cell density, and adventitial fibrosis. To assess whether base editing correction of human HGPS tissue engineered blood vessels (TEBVs) prevents the HGPS vascular phenotype and to identify the minimum fraction of edited smooth muscle cells needed to effect such changes, we transduced HGPS iPSCs with lentivirus containing ABE7.10max. Endothelial cells (viECs) and smooth muscle cells (viSMCs) obtained by differentiation of edited HGPS iPSCs did not express progerin and had double-stranded DNA breaks and reactive oxygen species at the same levels as healthy viSMCs and viECs. Editing HGPSviECs restored a normal response to shear stress. Normal vasodilation and viSMC density were restored in TEBVs made with edited cells. When TEBVs were prepared with at least 50% edited smooth muscle cells, viSMC proliferation and myosin heavy chain levels significantly improved. Sequencing of TEBV cells after perfusion indicated an enrichment of edited cells after 5 weeks of perfusion when they comprised 50% of the initial number of cells in the TEBVs. Thus, base editing correction of a fraction of HGPS vascular cells improves human TEBV phenotype.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。