Pressurized Hot Water Extraction and Bio-Hydrogels Formulation with Aristotelia chilensis [Mol.] Stuntz Leaves

加压热水提取和使用 Aristotelia chilensis [Mol.] Stuntz 叶制备生物水凝胶

阅读:8
作者:Audrey Bianchi, Pamela R Rivera-Tovar, Vanesa Sanz, Tania Ferreira-Anta, María Dolores Torres, José Ricardo Pérez-Correa, Herminia Domínguez

Abstract

Aristotelia chilensis is a plant rich in phenolics and other bioactive compounds. Their leaves are discarded as waste in the maqui berry industry. A new application of these wastes is intended by the recovery of bioactive compounds using pressurized hot water extraction with conventional or microwave heating. Both technologies have been selected for their green character regarding the type of solvent and the high efficiency in shorter operation times. Extractions were performed in the temperature range 140-200 °C with a solid/liquid ratio of 1:15 (w:w). The extracts' total phenolic content, antioxidant capacity, and saccharides content obtained with both heating methods were measured. Additionally, the thermo-rheological properties of the gelling matrix enriched with these extracts were analyzed. Optimum conditions for lyophilized extracts were found with conventional heating, at 140 °C and 20 min extraction; 250.0 mg GAE/g dry extract and 1321.5 mg Trolox/g dry extract. Close to optimum performance was achieved with microwave heating in a fraction of the time (5 min) at 160 °C (extraction), yielding extracts with 231.9 mg GAE/g dry extract of total phenolics and antiradical capacity equivalent to 1176.3 mg Trolox/g dry extract. Slightly higher antioxidant values were identified for spray-dried extracts (between 5% for phenolic content and 2.5% for antioxidant capacity). The extracts obtained with both heating methods at 200 °C contained more than 20% oligosaccharides, primarily glucose. All the formulated gelling matrices enriched with the obtained extracts displayed intermediate gel strength properties. The tested technologies efficiently recovered highly active antioxidant extracts, rich in polyphenolics, and valuable for formulating gelling matrices with potential applicability in foods and other products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。