Combustion Synthesis of Functionalized Carbonated Boron Nitride Nanoparticles and Their Potential Application in Boron Neutron Capture Therapy

功能化碳化氮化硼纳米粒子的燃烧合成及其在硼中子俘获疗法中的潜在应用

阅读:4
作者:Stanisław Cudziło, Bożena Szermer-Olearnik, Sławomir Dyjak, Mateusz Gratzke, Kamil Sobczak, Anna Wróblewska, Agnieszka Szczygieł, Jagoda Mierzejewska, Katarzyna Węgierek-Ciura, Andrzej Rapak, Paulina Żeliszewska, Dawid Kozień, Zbigniew Pędzich, Elżbieta Pajtasz-Piasecka

Abstract

In this research, we developed boron-rich nanoparticles that can be used for boron neutron capture therapy as potential carriers for boron delivery to cancerous tissues. Functionalized carbonated boron nitride nanostructures (CBNs) were successfully synthesized in self-propagating combustion waves in mixtures of high-nitrogen explosives and boron compounds. The products' composition, morphology, and structural features were investigated using Fourier transform infrared spectroscopy, powder X-ray diffraction, low-temperature nitrogen sorption analysis, thermogravimetric analysis, high-resolution scanning electron microscopy, and high-resolution transmission electron microscopy. The extreme conditions prevailing in combustion waves favor the formation of nanosized CBN hollow grains with highly disordered structures that are properly functionalized on the surface and inside the particles. Therefore, they are characterized by high porosity and good dispersibility in water, which are necessary for medical applications. During biological tests, a concentration-dependent effect of the obtained boron nitride preparations on the viability of normal and neoplastic cells was demonstrated. Moreover, the assessment of the degree of binding of fluorescently labeled nanoparticles to selected cells confirmed the relationships between the cell types and the concentration of the preparation at different incubation time points.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。