Antibacterial and Antifungal Activities of Poloxamer Micelles Containing Ceragenin CSA-131 on Ciliated Tissues

含 Ceragenin CSA-131 的泊洛沙姆胶束对纤毛组织的抗菌和抗真菌活性

阅读:5
作者:Marjan M Hashemi, Brett S Holden, Maddison F Taylor, John Wilson, Jordan Coburn, Brian Hilton, Tania Nance, Shawn Gubler, Carl Genberg, Shenglou Deng, Paul B Savage1

Abstract

Ceragenins were designed as non-peptide mimics of endogenous antimicrobial peptides, and they display broad-spectrum antibacterial and antifungal activities, including the ability to eradicate established biofilms. These features of ceragenins make them attractive potential therapeutics for persistent infections in the lung, including those associated with cystic fibrosis. A characteristic of an optimal therapeutic for use in the lungs and trachea is the exertion of potent antimicrobial activities without damaging the cilia that play a critical role in these tissues. In previous work, potent antimicrobial activities of ceragenin CSA-131 have been reported; however, we found in ex vivo studies that this ceragenin, at concentrations necessary to eradicate established biofilms, also causes loss of cilia function. By formulating CSA-131 in poloxamer micelles, cilia damage was eliminated and antimicrobial activity was unaffected. The ability of CSA-131, formulated with a poloxamer, to reduce the populations of fungal pathogens in tracheal and lung tissue was also observed in ex vivo studies. These findings suggest that CSA-131, formulated in micelles, may act as a potential therapeutic for polymicrobial and biofilm-related infections in the lung and trachea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。