The MICOS Complex Subunit Mic60 is Hijacked by Intracellular Bacteria to Manipulate Mitochondrial Dynamics and Promote Bacterial Pathogenicity

MICOS 复合体亚基 Mic60 被细胞内细菌劫持,从而操纵线粒体动力学并促进细菌致病性

阅读:4
作者:Changyong Cheng, Mianmian Chen, Jing Sun, Jiali Xu, Simin Deng, Jing Xia, Yue Han, Xian Zhang, Jing Wang, Lei Lei, Ruidong Zhai, Qin Wu, Weihuan Fang, Houhui Song

Abstract

Host mitochondria undergo fission and fusion, which bacteria often exploit for their infections. In this study, the underlying molecular mechanisms are aimed to clarify through which Listeria monocytogenes (L. monocytogenes), a human bacterial pathogen, manipulates mitochondrial dynamics to enhance its pathogenicity. It is demonstrated that L. monocytogenes triggers transient mitochondrial fission through its virulence factor listeriolysin O (LLO), driven by LLO's interaction with Mic60, a core component of the mitochondrial contact site and the cristae organizing system (MICOS). Specifically, Phe251 within LLO is identify as a crucial residue for binding to Mic60, crucial for LLO-induced mitochondrial fragmentation and bacterial pathogenicity. Importantly, it is that Mic60 affect the formation of F-actin tails recruited by L. monocytogenes, thereby contributing to intracellular bacterial infection. Mic60 plays a critical role in mediating changes in mitochondrial morphology, membrane potential, and reactive oxidative species (ROS) production, and L. monocytogenes infection exacerbates these changes by affecting Mic60 expression. These findings unveil a novel mechanism through which intracellular bacteria exploit host mitochondria, shedding light on the complex interplay between hosts and microbes during infections. This knowledge holds promise for developing innovative strategies to combat bacterial infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。