Conclusions
The authors propose SEA inclusion of in soil screening protocols as a cost-effective, complementary strategy to greatly enhance outcomes in undergraduate/citizen science-engaged antimicrobial biodiscovery initiatives.
Methods
We comparatively screened 229 isolates from woodland and garden soil samples on both tryptic soy agar (TSA) and soil extract agar (SEA) for antimicrobial activity against a panel of clinically relevant microbial pathogens.
Results
On one or both media, 15 isolates were found to produce zones of clearing against respective pathogens. 16S rRNA gene sequencing linked the isolates with three genera: Streptomyces (7), Paenibacillus (6), and Pseudomonas (2). Six of the Streptomyces isolates and one Pseudomonas demonstrated antimicrobial activity when screened on SEA, with no activity on TSA. Furthermore, incorporation of the known secondary metabolite inducer N acetyl-glucosamine (20 mM) into SEA media altered the pathogen inhibition profiles of 14 isolates and resulted in broad-spectrum activity of one Streptomyces isolate, not observed on SEA alone. In
