Dyes Confinement in the Nano Scale and Converting Poly Vinyl Alcohol to Be Optical-Active Polymeric Nanocomposites with High Thermal Stability

染料在纳米尺度上的限制以及将聚乙烯醇转化为具有高热稳定性的光学活性聚合物纳米复合材料

阅读:6
作者:Adil Alshoaibi

Abstract

In the present research, groups of nanolayered structures and nanohybrids based on organic green dyes and inorganic species are designated to act as fillers for PVA to induce new optical sites and increase its thermal stability through producing polymeric nanocomposites. In this trend, different percentages of naphthol green B were intercalated as pillars inside the Zn-Al nanolayered structures to form green organic-inorganic nanohybrids. The two-dimensional green nanohybrids were identified by X-ray diffraction, TEM and SEM. According to the thermal analyses, the nanohybrid, which has the highest amount of green dyes, was used for modifying the PVA through two series. In the first series, three nanocomposites were prepared depending on the green nanohybrid as prepared. In the second series, the yellow nanohybrid, which was produced from the green nanohybrid by thermal treatment, was used to produce another three nanocomposites. The optical properties revealed that the polymeric nanocomposites depending on green nanohybrids became optical-active in UV and visible regions because the energy band gap decreased to 2.2 eV. In addition, the energy band gap of the nanocomposites which depended on yellow nanohybrids was 2.5 eV. The thermal analyses indicated that the polymeric nanocomposites are thermally more stable than that of the original PVA. Finally, the dual functionality of organic-inorganic nanohybrids that were produced from the confinement of organic dyes and the thermal stability of inorganic species converted the non-optical PVA to optical-active polymer in a wide range with high thermal stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。