Kir1.1 and SUR1 are not implicated as subunits of an adenosine triphosphate-sensitive potassium channel involved in diazoxide cardioprotection

Kir1.1 和 SUR1 不被认为是参与二氮嗪心脏保护的三磷酸腺苷敏感钾通道的亚基

阅读:7
作者:Jie Wang, Kyriakos Papanicolaou, Robert Tryon, Janelle Sangalang, Ben Salazar, Alejandro Suarez-Pierre, Jie Dong, Anson Lee, Emily Larson, Sari Holmes, Brian O'Rourke, Colin Nichols, Jennifer Lawton

Conclusions

Isolated myocyte and heart models may measure independent and separate actions of diazoxide. By definitive genetic deletion, these data indicate that sensitive regulatory subunit 1 and renal outer medullary potassium are not implicated in cardioprotection by diazoxide.

Methods

Myocyte volume and contractility were compared after Tyrode's physiologic solution (20 minutes), stress (hyperkalemic cardioplegia ± diazoxide, ± VU591 (Kir1.1 inhibitor), N = 9 to 23 each, 20 min), and Tyrode's (20 minutes). Isolated mouse (wild-type, sensitive regulatory subunit 1 [-/-], and cardiac knockout renal outer medullary potassium) hearts were given cardioplegia ± diazoxide (N = 9-16 each) before global ischemia (90 minutes) and 30 minutes reperfusion. Left ventricular pressures were compared before and after ischemia.

Objective

The adenosine triphosphate-sensitive potassium channel opener diazoxide mimics ischemic preconditioning and is cardioprotective. Clarification of diazoxide's site and mechanism of action could lead to targeted pharmacologic therapies for patients undergoing cardiac surgery. Several mitochondrial candidate proteins have been investigated as potential adenosine triphosphate-sensitive potassium channel components. Renal outer medullary potassium (Kir1.1) and sulfonylurea sensitive regulatory subunit 1 have been suggested as subunits of a mitochondrial adenosine triphosphate-sensitive potassium channel. We hypothesized that pharmacologic blockade or genetic deletion (knockout) of renal outer medullary potassium and sensitive regulatory subunit 1 would result in loss of diazoxide cardioprotection in models of global ischemia with cardioplegia.

Results

Stress (cardioplegia) was associated with reduced myocyte contractility that was prevented by diazoxide. Isolated myocytes were not responsive to diazoxide in the presence of VU591. In isolated hearts, diazoxide improved left ventricular function after prolonged ischemia compared with cardioplegia alone in wild-type and knockout (sensitive regulatory subunit 1 [-/-] and cardiac knockout renal outer medullary potassium) mice. Conclusions: Isolated myocyte and heart models may measure independent and separate actions of diazoxide. By definitive genetic deletion, these data indicate that sensitive regulatory subunit 1 and renal outer medullary potassium are not implicated in cardioprotection by diazoxide.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。