In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution

在 CdIn2S4 光催化剂上原位光沉积磷酸钴 (CoHxPOy),以加速空穴提取和改善氢气释放

阅读:9
作者:Jiachen Xu, Qinran Li, Dejian Sui, Wei Jiang, Fengqi Liu, Xiuquan Gu, Yulong Zhao, Pengzhan Ying, Liang Mao, Xiaoyan Cai, Junying Zhang

Abstract

The ternary metal sulfide CdIn2S4 (CIS) has great application potential in solar-to-hydrogen conversion due to its suitable band gap, good stability and low cost. However, the photocatalytic hydrogen (H2) evolution performance of CIS is severely limited by the rapid electron-hole recombination originating from the slow photogenerated hole transfer kinetics. Herein, by simply depositing cobalt phosphate (CoHxPOy, noted as Co-Pi), a non-precious co-catalyst, an efficient pathway for accelerating the hole transfer process and subsequently promoting the H2 evolution reaction (HER) activity of CIS nanosheets is developed. X-ray photoelectron spectroscopy (XPS) reveals that the Co atoms of Co-Pi preferentially combine with the unsaturated S atoms of CIS to form Co-S bonds, which act as channels for fast hole extraction from CIS to Co-Pi. Electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) showed that the introduction of Co-Pi on ultrathin CIS surface not only increases the probability of photogenerated holes arriving the catalyst surface, but also prolongs the charge carrier's lifetime by reducing the recombination of electrons and holes. Therefore, Co-Pi/CIS exhibits a satisfactory photocatalytic H2 evolution rate of 7.28 mmol g-1 h-1 under visible light, which is superior to the pristine CIS (2.62 mmol g-1 h-1) and Pt modified CIS (3.73 mmol g-1 h-1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。