Reactivation of low avidity tumor-specific CD8+ T cells associates with immunotherapeutic efficacy of anti-PD-1

低亲和力肿瘤特异性 CD8+ T 细胞的再激活与抗 PD-1 的免疫治疗效果相关

阅读:6
作者:Gessa Sugiyarto #, Doreen Lau #, Samuel Luke Hill #, David Arcia-Anaya, Denise S M Boulanger, Eileen Parkes, Edward James, Tim Elliott

Background

CD8+ T cells are a highly diverse population of cells with distinct phenotypic functions that can influence immunotherapy outcomes. Further insights on the roles of CD8+ specificities and TCR avidity of naturally arising tumor-specific T cells, where both high and low avidity T cells recognizing the same peptide-major histocompatibility complex (pMHC) coexist in the same tumor, are crucial for understanding T cell exhaustion and resistance to PD-1 immunotherapy.

Conclusions

Targeting subdominant T cell responses with lower avidity against pMHC affinity neoepitopes showed potential for improving PD-1 immunotherapy. Future interventions may consider expanding low avidity populations via vaccination or adoptive transfer.

Methods

CT26 models were treated with anti-PD-1 on days 3, 6 and 9 following subcutaneous tumor implantation generating variable responses during early tumor development. Tetramer staining was performed to determine the frequency and avidity of CD8+ T cells targeting the tumor-specific epitope GSW11 and confirmed with tetramer competition assays. Functional characterization of high and low avidity GSW11-specific CD8+ T cells was conducted using flow cytometry and bulk RNA-seq. In vitro cytotoxicity assays and in vivo adoptive transfer experiments were performed to determine the cytotoxicity of high and low avidity populations.

Results

Treatment success with anti-PD-1 was associated with the preferential expansion of low avidity (Tetlo) GSW11-specific CD8+ T cells with Vβ TCR expressing clonotypes. High avidity T cells (Tethi), if present, were only found in progressing PD-1 refractory tumors. Tetlo demonstrated precursor exhausted or progenitor T cell phenotypes marked by higher expression of Tcf-1 and T-bet, and lower expression of the exhaustion markers CD39, PD-1 and Eomes compared with Tethi, whereas Tethi cells were terminally exhausted. Transcriptomics analyses showed pathways related to TCR signaling, cytotoxicity and oxidative phosphorylation were significantly enriched in Tetlo found in both regressing and progressing tumors compared with Tethi, whereas genes related to DNA damage, apoptosis and autophagy were downregulated. In vitro studies showed that Tetlo exhibits higher cytotoxicity than Tethi. Adoptive transfer of Tetlo showed more effective tumor control than Tethi, and curative responses were achieved when Tetlo was combined with two doses of anti-PD-1. Conclusions: Targeting subdominant T cell responses with lower avidity against pMHC affinity neoepitopes showed potential for improving PD-1 immunotherapy. Future interventions may consider expanding low avidity populations via vaccination or adoptive transfer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。