Heat Oscillations Driven by the Embryonic Cell Cycle Reveal the Energetic Costs of Signaling

胚胎细胞周期驱动的热振荡揭示了信号传导的能量成本

阅读:7
作者:Jonathan Rodenfels, Karla M Neugebauer, Jonathon Howard

Abstract

All living systems function out of equilibrium and exchange energy in the form of heat with their environment. Thus, heat flow can inform on the energetic costs of cellular processes, which are largely unknown. Here, we have repurposed an isothermal calorimeter to measure heat flow between developing zebrafish embryos and the surrounding medium. Heat flow increased over time with cell number. Unexpectedly, a prominent oscillatory component of the heat flow, with periods matching the synchronous early reductive cleavage divisions, persisted even when DNA synthesis and mitosis were blocked by inhibitors. Instead, the heat flow oscillations were driven by the phosphorylation and dephosphorylation reactions catalyzed by the cell-cycle oscillator, the biochemical network controlling mitotic entry and exit. We propose that the high energetic cost of cell-cycle signaling reflects the significant thermodynamic burden of imposing accurate and robust timing on cell proliferation during development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。