Bacteria in hypertrophic scars promote scar formation through HSBP1-mediated autophagy

增生性瘢痕中的细菌通过 HSBP1 介导的自噬促进瘢痕形成

阅读:16
作者:Bo Yuan, Jiarong Yu, Jiaoyun Dong, Zhigang Mao, Xiqiao Wang

Abstract

Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S. aureus) and evaluated their levels of apoptosis and proliferation by flow cytometry and Cell Counting Kit-8 assay, respectively. Additionally, we performed proteomic analysis and western blotting to identify upregulated proteins. To assess autophagy levels, we examined light chain 3 (LC3) expression through western blotting and immunofluorescence, and transmission electron microscopy (TEM) was performed to detect autophagy-associated vesicles. Our results demonstrated a notable increase in bacterial load, primarily S. aureus, in HS tissues. Furthermore, S. aureus promoted fibroblast proliferation and enhanced the expression of profibrotic markers such as transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), collagen I, collagen III and α smooth muscle actin (α-SMA). Proteomic analysis highlighted heat shock factor-binding protein 1 (HSBP1) as a key upregulated protein mediating the profibrotic effects induced by S. aureus. Knockdown of HSBP1 reversed these effects. Intriguingly, HSBP1 also upregulated LC3 and Beclin-1 expression and increased the number of autophagosomes in fibroblasts. Finally, when fibroblasts stimulated by S. aureus were treated with HSBP1 siRNA, autophagy levels decreased significantly. Collectively, our findings suggest that S. aureus, via HSBP1, stimulates fibroblast proliferation and promotes their transition into myofibroblasts, triggering autophagy and fibrosis. These results underscore the potential of HSBP1 as a therapeutic target for the management of HSs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。