Synthesis and Characterization of MnO2@Cellulose and Polypyrrole-Decorated MnO2@Cellulose for the Detection of Chemical Warfare Agent Simulant

MnO2@纤维素及聚吡咯修饰的MnO2@纤维素的合成与表征及其在化学战剂模拟物检测中的应用

阅读:6
作者:Sanjeeb Lama, Sumita Subedi, Sivalingam Ramesh, Kyeongho Shin, Young-Jun Lee, Joo-Hyung Kim

Abstract

Chemical warfare agents (CWAs) have been threatening human civilization and its existence because of their rapid response, toxic, and irreversible nature. The hybrid nanostructured composites were synthesized by the hydrothermal process to detect the dimethyl methyl phosphonate (DMMP), a simulant of G-series nerve agents, especially sarin. Cellulose (CE), manganese oxide cellulose (MnO2@CE), and MnO2@CE/polypyrrole (PPy) exhibited a frequency shift of 0.4, 4.8, and 8.9 Hz, respectively, for a DMMP concentration of 25 ppm in the quartz crystal microbalance (QCM). In surface acoustic wave (SAW) sensor, they exhibited 187 Hz, 276 Hz, and 78 Hz, respectively. A comparison between CE, MnO2@CE, and MnO2@CE/PPy demonstrated that MnO2@CE/PPy possesses excellent linearity with a coefficient of determination (COD or R2) of 0.992 and 0.9547 in the QCM and SAW sensor. The hybrid composite materials showed a reversible adsorption and desorption phenomenon in the reproducibility test. The response and recovery times indicated that MnO2@CE/PPy showed the shortest response (~23 s) and recovery times (~42 s) in the case of the QCM sensor. Hence, the pristine CE and its nanostructured composites were compared to analyze the sensing performance based on sensitivity, selectivity, linearity, reproducibility, and response and recovery times to detect the simulant of nerve agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。