Various endurance training intensities improve GFR and Up-regulate AQP2/GSK3β in lithium-induced nephropathic rats

不同强度的耐力训练可改善锂诱发肾病大鼠的 GFR 并上调 AQP2/GSK3β

阅读:10
作者:Shadan Saberi #, Mohammad Amin Rajizadeh #, Mohammad Khaksari, Azadeh Saber, Mohammad Akhbari, Soheil Aminizadeh, Forouzan Rafie

Aim

This study aimed to investigate the effects of different intensities of endurance training on kidney function and inflammation in a rat model of lithium-induced nephropathy, focusing on the expression of aquaporin 2 (AQP2), glycogen synthase kinase 3-beta (GSK-3β), and SIRT1.

Background

Lithium is extensively used for mood stabilization in bipolar disorder, but its long-term use can lead to nephrotoxicity, characterized by a reduction in glomerular filtration rate (GFR) and potential progression to end-stage renal disease (ESRD). Exercise has been shown to have protective effects on renal function, yet the impact of varying exercise intensities on lithium-induced nephropathy is not well understood.

Conclusion

Endurance training, particularly at high intensity, significantly mitigates lithium-induced renal impairment by improving GFR, reducing inflammation, and enhancing the expression of renal protective proteins. These findings suggest that tailored exercise regimens could be beneficial for patients undergoing long-term lithium therapy to prevent renal damage. Clinical trial number: Not applicable.

Methods

Thirty-five male Wistar rats were divided into five groups: control, lithium-only, lithium with low-intensity exercise (LIT), lithium with medium-intensity exercise (MIT), and lithium with high-intensity exercise (HIT). The lithium-induced nephropathy model was established by administering lithium in food. Exercise groups underwent treadmill training at specified intensities for eight weeks. Fractional excretion of sodium (FENa) was measured, and GFR was evaluated by Cr clearance. ELISA and Western blotting assessed inflammatory markers (TNF-α, IL-10), SIRT1, GSK-3β, and AQP2 expressions in kidney tissues.

Results

Lithium significantly reduced Cr clearance and increased FENa compared to controls. All exercise intensities improved Cr clearance and reduced FENa, with HIT showing the most significant improvement. Exercise at all intensities reduced TNF-α levels and increased IL-10 levels, with MIT and HIT significantly enhancing SIRT1 levels. Lithium reduced the expression of GSK-3β and AQP2, whereas exercise increased their expression across all intensities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。