Background
in patients with chronic kidney disease (CKD), the inflammatory and pro-oxidant milieu may contribute to malnutrition development. In this study, we investigated the relationship between inflammation, advanced glycation end-products (AGEs), and their receptors (RAGEs) with malnutrition in CKD patients.
Conclusions
in CKD patients, RAGEs isoforms, but not AGEs, are associated with malnutrition, irrespective of systemic inflammation, aging, and renal function.
Methods
we evaluated 117 patients. AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer, soluble RAGEs isoforms, and inflammatory interleukins by ELISA. Malnutrition was assessed by a malnutrition inflammation score.
Results
mean age was 80 ± +11 years, eGFR was 25 ± +11 mL/min/1.73 m2 and BMI was 28 ± 5 Kg/m2. Malnourished individuals were older, had lower estimated protein intake (nPCR 0.65 ± 0.2 vs. 0.8 ± 0.2 vs. 0.8 ± 0.3, p = 0.01), higher C reactive protein (CRP 0.6 ± 1 vs. 0.6 ± 0.7 vs. 0.17 ± 0.13, p = 0.02) and tumor necrosis factor α (TNF α 14.7 ± 8.7 vs. 15.6 ± 8 vs. 11.8 ± 5.8, p = 0.029). Malnourished patients had higher sRAGE (2813 ± 1477 vs. 2158 ± 1236 vs. 2314 ± 1115, p = 0.035) and esRAGE (648 [408-1049] vs. 476 [355-680] vs. 545 [380-730] p = 0.033). In the multivariate analysis, only sRAGE maintained its association with malnutrition (p = 0.02) independently of aging and inflammation. Conclusions: in CKD patients, RAGEs isoforms, but not AGEs, are associated with malnutrition, irrespective of systemic inflammation, aging, and renal function.
