Cathepsin B Dipeptidyl Carboxypeptidase and Endopeptidase Activities Demonstrated across a Broad pH Range

组织蛋白酶 B 二肽基羧肽酶和内肽酶活性在广泛的 pH 范围内得到证实

阅读:6
作者:Michael C Yoon, Vivian Hook, Anthony J O'Donoghue

Abstract

Cathepsin B is a lysosomal protease that participates in protein degradation. However, cathepsin B is also active under neutral pH conditions of the cytosol, nuclei, and extracellular locations. The dipeptidyl carboxypeptidase (DPCP) activity of cathepsin B, assayed with the Abz-GIVR↓AK(Dnp)-OH substrate, has been reported to display an acidic pH optimum. In contrast, the endopeptidase activity, monitored with Z-RR-↓AMC, has a neutral pH optimum. These observations raise the question of whether other substrates can demonstrate cathepsin B DPCP activity at neutral pH and endopeptidase activity at acidic pH. To address this question, global cleavage profiling of cathepsin B with a diverse peptide library was conducted under acidic and neutral pH conditions. Results revealed that cathepsin B has (1) major DPCP activity and modest endopeptidase activity under both acidic and neutral pH conditions and (2) distinct pH-dependent amino acid preferences adjacent to cleavage sites for both DPCP and endopeptidase activities. The pH-dependent cleavage preferences were utilized to design a new Abz-GnVR↓AK(Dnp)-OH DPCP substrate, with norleucine (n) at the P3 position, having improved DPCP activity of cathepsin B at neutral pH compared to the original Abz-GIVR↓AK(Dnp)-OH substrate. The new Z-VR-AMC and Z-ER-AMC substrates displayed improved endopeptidase activity at acidic pH compared to the original Z-RR-AMC. These findings illustrate the new concept that cathepsin B possesses DPCP and endopeptidase activities at both acidic and neutral pH values. These results advance understanding of the pH-dependent cleavage properties of the dual DPCP and endopeptidase activities of cathepsin B that function under different cellular pH conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。