Unsupervised discovery of dynamic cell phenotypic states from transmitted light movies

从透射光电影中无监督地发现动态细胞表型状态

阅读:5
作者:Phuc Nguyen, Sylvia Chien, Jin Dai, Raymond J Monnat Jr, Pamela S Becker, Hao Yuan Kueh

Abstract

Identification of cell phenotypic states within heterogeneous populations, along with elucidation of their switching dynamics, is a central challenge in modern biology. Conventional single-cell analysis methods typically provide only indirect, static phenotypic readouts. Transmitted light images, on the other hand, provide direct morphological readouts and can be acquired over time to provide a rich data source for dynamic cell phenotypic state identification. Here, we describe an end-to-end deep learning platform, UPSIDE (Unsupervised Phenotypic State IDEntification), for discovering cell states and their dynamics from transmitted light movies. UPSIDE uses the variational auto-encoder architecture to learn latent cell representations, which are then clustered for state identification, decoded for feature interpretation, and linked across movie frames for transition rate inference. Using UPSIDE, we identified distinct blood cell types in a heterogeneous dataset. We then analyzed movies of patient-derived acute myeloid leukemia cells, from which we identified stem-cell associated morphological states as well as the transition rates to and from these states. UPSIDE opens up the use of transmitted light movies for systematic exploration of cell state heterogeneity and dynamics in biology and medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。