In Situ Hydrothermal Synthesis of Ni1-xMnxWO4 Nanoheterostructure for Enhanced Photodegradation of Methyl Orange

原位水热合成 Ni1-xMnxWO4 纳米异质结构以增强甲基橙的光降解

阅读:6
作者:Imran Hasan, Mohammed Abdullah Albaeejan, Alanoud Abdullah Alshayiqi, Wedyan Saud Al-Nafaei, Fahad A Alharthi

Abstract

The monoclinic nanocrystalline Ni1-xMnxWO4 heterostructure has been successfully synthesized by the hydrothermal technique for achieving better sensitive and photocatalytic performances. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis), and photoluminescence (PL) spectroscopy have been employed to investigate their structural, microstructural, and optical properties. Mn-ion incorporation in the NiWO4 lattice reduces the particle size of the sample compared with the pure undoped NiWO4 sample, which has been confirmed from the transmission electron microscope image. The Tauc plot of the Ni1-xMnxWO4 sample exhibits a significant decrease in bandgap energy compared with the pure undoped NiWO4 sample due to the quantum confinement effect. Finally, the material was explored as a photocatalyst for the degradation of methyl orange (MO) dye from wastewater under visible light irradiation. Various reaction parameters such as pH, catalyst dose, reaction time, and kinetics of the photodegradation were studied using the batch method. The results showed that the Ni1-xMnxWO4 is highly efficient (94.51%) compared with undoped NiWO4 (65.45%). The rate of photodegradation by Ni1-xMnxWO4 (0.067) was found to be 1.06 times higher than the undoped NiWO4 (0.062).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。