Hydrothermal Synthesis of Siderite and Application as Catalyst in the Electro-Fenton Oxidation of p-Benzoquinone

菱铁矿的水热合成及其在对苯醌电芬顿氧化反应中的催化作用

阅读:7
作者:Özkan Görmez, Barış Saçlı, Uğur Çağlayan, Dimitrios Kalderis, Belgin Gözmen

Abstract

A weak aspect of the electro-Fenton (EF) oxidation of contaminants is the dependence of the Fenton reaction on acidic pH values. Therefore, the rationale of this work was to develop a novel catalyst capable of promoting the EF oxidation process at near-neutral and basic pH values. In this framework, rhombohedral FeCO3 was synthesized hydrothermally and used as a catalyst in the EF oxidation of p-benzoquinone (BQ). The catalyst was characterized using various surface and spectroscopic methods. Moreover, the effects of applied current (100-500 mA), time (1-9 h), catalyst dosage (0.25-1.00 g L-1), and initial concentration of BQ (0.50-1.00 mM) on the total organic carbon removal efficiency were determined. The results indicated that a 400 mA current was sufficient for a 95% total organic carbon removal and that the increase in catalyst dosage had a positive effect on the mineralization of BQ. It was determined that at pH 3, FeCO3 behaved like a homogeneous catalyst by releasing Fe3+ ions; whereas, at the pH range of 5-7, it shifted to a homogeneous/heterogeneous catalyst. At pH 9, it worked solely as a heterogeneous catalyst due to the decrease of Fe ions passing into the solution. Finally, the spent catalyst did not undergo structural deformations after the EF treatment at higher pH values and could be regenerated and used several times.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。