Long-Term Treatment with Fluvoxamine Decreases Nonmotor Symptoms and Dopamine Depletion in a Postnatal Stress Rat Model of Parkinson's Disease

长期使用氟伏沙明治疗可减轻产后应激性帕金森病大鼠模型中的非运动症状和多巴胺耗竭

阅读:5
作者:Ernest Dallé, William M U Daniels, Musa V Mabandla

Abstract

Nonmotor symptoms (NMS) such as anxiety, depression, and cognitive deficits are frequently observed in Parkinson's disease (PD) and precede the onset of motor symptoms by years. We have recently explored the short-term effects of Fluvoxamine, a selective serotonin reuptake inhibitor (SSRI) on dopaminergic neurons in a parkinsonian rat model. Here, we report the long-term effects of Fluvoxamine, on early-life stress-induced changes in the brain and behavior. We specifically evaluated the effects of Fluvoxamine on brain mechanisms that contribute to NMS associated with PD in a unilateral 6-hydroxydopamine-lesioned rat model. A 14-day early postnatal maternal separation protocol was applied to model early-life stress followed by unilateral intracerebral infusion of 6-hydroxydopamine (6-OHDA) to model aspects of parkinsonism in rats. The anxiolytic, antidepressant, and cognitive effects of Fluvoxamine were confirmed using the elevated plus-maze (EPM) test, sucrose preference test (SPT), and Morris water maze (MWM) test. Further to that, our results showed that animals exposed to early-life stress displayed increased plasma corticosterone and malondialdehyde (MDA) levels which were attenuated by Fluvoxamine treatment. A 6-OHDA lesion effect was evidenced by impairment in the limb-use asymmetry test as well as decreased dopamine (DA) and serotonin levels in the striatum, prefrontal cortex, and hippocampus. These effects were surprisingly attenuated by Fluvoxamine treatment in all treated rats. This study is the first to suggest that early and long-term treatment of neuropsychological diseases with Fluvoxamine may decrease the vulnerability of dopaminergic neurons that degenerate in the course of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。