Novel CRISPR-Cas9 iPSC knockouts for PCCA and PCCB genes: advancing propionic acidemia research

新型 CRISPR-Cas9 iPSC 敲除 PCCA 和 PCCB 基因:推进丙酸血症研究

阅读:12
作者:Emilio M García-Tenorio, Mar Álvarez, Mónica Gallego-Bonhomme, Lourdes R Desviat, Eva Richard

Abstract

Propionic acidemia (PA) is a rare autosomal recessive metabolic disorder caused by mutations in the PCCA and PCCB genes, which encode subunits of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). This enzyme deficiency leads to the accumulation of toxic metabolites, resulting in severe metabolic dysfunction. To create ideal in vitro disease models of PA with isogenic controls and provide a robust platform for therapeutic research, we generated two induced pluripotent stem cell (iPSC) lines with knockout (KO) mutations in the PCCA and PCCB genes using CRISPR-Cas9 gene editing in a healthy control iPSC line. The KO iPS cells were successfully established and characterized, confirming the presence of frameshift insertions and deletions in each target gene, as well as the loss of the corresponding transcript, protein expression, and activity. Additionally, the generated iPSC lines exhibit hallmark characteristics of pluripotency, including the potential to differentiate into all three germ layers. Our PCCA and PCCB KO iPSC models provide a valuable tool for studying the molecular mechanisms underlying PA and hold potential for advancing new therapeutic approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。