Role of mitochondrial permeability transition in taurine deficiency-induced apoptosis

线粒体通透性转换在牛磺酸缺乏引起细胞凋亡中的作用

阅读:8
作者:Chian Ju Jong, Junichi Azuma, Stephen W Schaffer

Abstract

It has recently been shown that taurine deficiency leads to impaired respiratory chain function, resulting in reduced ATP generation and enhanced oxidative stress. Because cardiomyopathy develops in taurine-deficient animals, the hypothesis that mitochondrial oxidative stress may contribute to the development of cardiomyocyte dysfunction and cell death was tested. Isolated neonatal cardiomyocytes incubated in medium containing the taurine transport inhibitor, beta-alanine, lost nearly one-half of their cellular taurine content after 48 h. Accompanying the loss of taurine was a time-dependent increase in apoptosis, which was prevented by the mitochondrial permeability transition inhibitor, cyclosporin A. Two taurine-dependent factors, oxidative stress and calcium overload, serve as important regulators of the mitochondrial permeability transition. Although taurine deficiency slowed the removal of calcium from the cytosol, it had no effect on diastolic calcium content and only modestly reduced systolic calcium content, suggesting that calcium overload is not the trigger for mitochondrial permeability transition pore formation. On the other hand, the glutathione redox ratio was significantly altered in the taurine-deficient cardiomyocyte, suggesting that oxidative stress is the primary initiator of mitochondrial permeability transition and apoptosis in the taurine-deficient cardiomyocyte.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。