Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes

重复基因相互丢失导致的水稻花粉杂交不亲和

阅读:5
作者:Yoko Mizuta, Yoshiaki Harushima, Nori Kurata

Abstract

Genetic incompatibility is a barrier contributing to species isolation and is caused by genetic interactions. We made a whole genome survey of two-way interacting loci acting within the gametophyte or zygote using independence tests of marker segregations in an F(2) population from an intersubspecific cross between O. sativa subspecies indica and japonica. We detected only one reproducible interaction, and identified paralogous hybrid incompatibility genes, DOPPELGANGER1 (DPL1) and DOPPELGANGER2 (DPL2), by positional cloning. Independent disruptions of DPL1 and DPL2 occurred in indica and japonica, respectively. DPLs encode highly conserved, plant-specific small proteins (∼10 kDa) and are highly expressed in mature anther. Pollen carrying two defective DPL alleles became nonfunctional and did not germinate, suggesting an essential role for DPLs in pollen germination. Although rice has many duplicated genes resulting from ancient whole genome duplication, the origin of this gene duplication was in recent small-scale gene duplication, occurring after Oryza-Brachypodium differentiation. Comparative analyses suggested the geographic and phylogenetic distribution of these two defective alleles, showing that loss-of-function mutations of DPL1 genes emerged multiple times in indica and its wild ancestor, O. rufipogon, and that the DPL2 gene defect is specific to japonica cultivars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。