NCOR1 modulates erythroid disorders caused by mutations of thyroid hormone receptor α1

NCOR1 调节甲状腺激素受体 α1 突变引起的红细胞疾病

阅读:8
作者:Cho Rong Han, Sunmi Park, Sheue-Yann Cheng

Abstract

Thyroid hormone receptor α (THRA) gene mutations, via dominant negative mode, cause erythroid abnormalities in patients. Using mice expressing a dominant negative TRα1 mutant (TRα1PV; Thra1 PV/+ mice), we showed that TRα1PV acted directly to suppress the expression of key erythroid genes, causing erythroid defects. The nuclear receptor corepressor 1 (NCOR1) was reported to mediate the dominant negative effects of mutated TRα1. However, how NCOR1 could regulate TRα1 mutants in erythroid defects in vivo is not known. In the present study, we crossed Thra1 PV/+ mice with mice expressing a mutant Ncor1 allele (NCOR1ΔID; Ncor1 ΔID mice). TRα1PV mutant cannot bind to NCOR1ΔID. The expression of NCOR1ΔID ameliorated abnormalities in the peripheral blood indices, and corrected the defective differentiation potential of progenitors in the erythroid lineage. The defective terminal erythropoiesis of lineage-negative bone marrow cells of Thra1 PV/+ mice was rescued by the expression of NCOR1ΔID. De-repression of key erythroid genes in Thra1 PV/+ Ncor1 ΔID/ΔID mice led to partial rescue of terminal erythroid differentiation. These results indicate that the inability of TRα1PV to recruit NCOR1ΔID to form a repressor complex relieved the deleterious actions of TRα1 mutants in vivo. NCOR1 is a critical novel regulator underpining the pathogenesis of erythroid abnormalities caused by TRα1 mutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。