TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations

海马神经元中的 TRPM7 通道检测细胞外二价阳离子的水平

阅读:6
作者:Wen-Li Wei, Hong-Shuo Sun, Michelle E Olah, Xiujun Sun, Elzbieta Czerwinska, Waldemar Czerwinski, Yasuo Mori, Beverley A Orser, Zhi-Gang Xiong, Michael F Jackson, Michael Tymianski, John F MacDonald

Abstract

Exposure to low Ca(2+) and/or Mg(2+) is tolerated by cardiac myocytes, astrocytes, and neurons, but restoration to normal divalent cation levels paradoxically causes Ca(2+) overload and cell death. This phenomenon has been called the "Ca(2+) paradox" of ischemia-reperfusion. The mechanism by which a decrease in extracellular Ca(2+) and Mg(2+) is "detected" and triggers subsequent cell death is unknown. Transient periods of brain ischemia are characterized by substantial decreases in extracellular Ca(2+) and Mg(2+) that mimic the initial condition of the Ca(2+) paradox. In CA1 hippocampal neurons, lowering extracellular divalents stimulates a nonselective cation current. We show that this current resembles TRPM7 currents in several ways. Both (i) respond to transient decreases in extracellular divalents with inward currents and cell excitation, (ii) demonstrate outward rectification that depends on the presence of extracellular divalents, (iii) are inhibited by physiological concentrations of intracellular Mg(2+), (iv) are enhanced by intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)), and (v) can be inhibited by Galphaq-linked G protein-coupled receptors linked to phospholipase C beta1-induced hydrolysis of PIP(2). Furthermore, suppression of TRPM7 expression in hippocampal neurons strongly depressed the inward currents evoked by lowering extracellular divalents. Finally, we show that activation of TRPM7 channels by lowering divalents significantly contributes to cell death. Together, the results demonstrate that TRPM7 contributes to the mechanism by which hippocampal neurons "detect" reductions in extracellular divalents and provide a means by which TRPM7 contributes to neuronal death during transient brain ischemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。