Differentiation of Myositis-Induced Models of Bacterial Infection and Inflammation with T2-Weighted, CEST, and DCE-MRI

使用 T2 加权、CEST 和 DCE-MRI 区分肌炎诱发的细菌感染和炎症模型

阅读:9
作者:Joshua M Goldenberg, Alexander J Berthusen, Julio Cárdenas-Rodríguez, Mark D Pagel

Abstract

We used T2 relaxation, chemical exchange saturation transfer (CEST), and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) to assess whether bacterial infection can be differentiated from inflammation in a myositis-induced mouse model. We measured the T2 relaxation time constants, %CEST at 5 saturation frequencies, and area under the curve (AUC) from DCE-MRI after maltose injection from infected, inflamed, and normal muscle tissue models. We applied principal component analysis (PCA) to reduce dimensionality of entire CEST spectra and DCE signal evolutions, which were analyzed using standard classification methods. We extracted features from dimensional reduction as predictors for machine learning classifier algorithms. Normal, inflamed, and infected tissues were evaluated with H&E and gram-staining histological studies, and bacterial-burden studies. The T2 relaxation time constants and AUC of DCE-MRI after injection of maltose differentiated infected, inflamed, and normal tissues. %CEST amplitudes at -1.6 and -3.5 ppm differentiated infected tissues from other tissues, but these did not differentiate inflamed tissue from normal tissue. %CEST amplitudes at 3.5, 3.0, and 2.5 ppm, AUC of DCE-MRI for shorter time periods, and relative Ktrans and kep values from DCE-MRI could not differentiate tissues. PCA and machine learning of CEST-MRI and DCE-MRI did not improve tissue classifications relative to traditional analysis methods. Similarly, PCA and machine learning did not further improve tissue classifications relative to T2 MRI. Therefore, future MRI studies of infection models should focus on T2-weighted MRI and analysis of T2 relaxation times.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。