Improved mineralization of dental enamel by electrokinetic delivery of F- and Ca2+ ions

通过电动输送 F- 和 Ca2+ 离子改善牙釉质的矿化

阅读:10
作者:NamBeng Tay, HiongYap Gan #, Frederico Barbosa de Sousa #, Lu Shen, Diego Figueiredo Nóbrega, Chenhui Peng, LaTonya Kilpatrick-Liverman, Wei Wang, Stacey Lavender, Shira Pilch, Jongyoon Han

Abstract

This in vitro study evaluated the effects of the infiltration of F- and Ca2+ ions into human enamel by electrokinetic flow (EKF) on the enamel microhardness and F- content. Sound human enamel ground sections of unerupted third molars were infiltrated with de-ionized water by EKF and with F- ion by EKF respectively. All samples were submitted to two successive transverse acid-etch biopsies (etching times of 30 s and 20 min) to quantify F- ion infiltrated deep into enamel. Remarkably, sound enamel showed a large increase in microhardness (MH) after infiltration of NaF (p < 0.00001) and CaCl2 (p = 0.013) by EKF. Additionally, NaF-EKF increased the remineralization in the lesion body of artificial enamel caries lesions compared to controls (p < 0.01). With the enamel biopsy technique, at both etching times, more F- ions were found in the EKF-treated group than the control group (p << 0.05), and more fluoride was extracted from deeper biopsies in the NaF-EKF group. In conclusion, our results show that EKF treatment is superior in transporting Ca2+ and F- ions into sound enamel when compared to molecular diffusion, enhancing both the mineralization of sound enamel and the remineralization of artificial enamel caries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。