Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1

小胶质细胞外泌体 miRNA-137 通过靶向 Notch1 减轻缺血性脑损伤

阅读:5
作者:Dianquan Zhang, Guoliang Cai, Kai Liu, Zhe Zhuang, Kunping Jia, Siying Pei, Xiuzhen Wang, Hong Wang, Shengnan Xu, Cheng Cui, Manchao Sun, Sihui Guo, Wenli Song, Guofeng Cai

Abstract

Microglia are the resident immune cells in the central nervous system and play an essential role in brain homeostasis and neuroprotection in brain diseases. Exosomes are crucial in intercellular communication by transporting bioactive miRNAs. Thus, this study aimed to investigate the function of microglial exosome in the presence of ischemic injury and related mechanism. Oxygen-glucose deprivation (OGD)-treated neurons and transient middle cerebral artery occlusion (TMCAO)-treated mice were applied in this study. Western blotting, RT-PCR, RNA-seq, luciferase reporter assay, transmission electron microscope, nanoparticle tracking analysis, immunohistochemistry, TUNEL and LDH assays, and behavioral assay were applied in mechanistic and functional studies. The results demonstrated that exosomes derived from microglia in M2 phenotype (BV2-Exo) were internalized by neurons and attenuated neuronal apoptosis in response to ischemic injury in vitro and in vivo. BV2-Exo also decreased infarct volume and behavioral deficits in ischemic mice. Exosomal miRNA-137 was upregulated in BV2-Exo and participated in the partial neuroprotective effect of BV2-Exo. Furthermore, Notch1 was a directly targeting gene of exosomal miRNA-137. In conclusion, these results suggest that BV2-Exo alleviates ischemia-reperfusion brain injury through transporting exosomal miRNA-137. This study provides novel insight into microglial exosomes-based therapies for the treatment of ischemic brain injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。