Characterization of SARS-CoV-2 replication complex elongation and proofreading activity

SARS-CoV-2 复制复合物延伸和校对活性的表征

阅读:5
作者:Alisha N Jones, André Mourão, Anna Czarna, Alex Matsuda, Roberto Fino, Krzysztof Pyrc, Michael Sattler, Grzegorz M Popowicz

Abstract

The replication complex (RC) of SARS-CoV-2 was recently shown to be one of the fastest RNA-dependent RNA polymerases of any known coronavirus. With this rapid elongation, the RC is more prone to incorporate mismatches during elongation, resulting in a highly variable genomic sequence. Such mutations render the design of viral protein targets difficult, as drugs optimized for a given viral protein sequence can quickly become inefficient as the genomic sequence evolves. Here, we use biochemical experiments to characterize features of RNA template recognition and elongation fidelity of the SARS-CoV-2 RdRp, and the role of the exonuclease, nsp14. Our study highlights the 2'OH group of the RNA ribose as a critical component for RdRp template recognition and elongation. We show that RdRp fidelity is reduced in the presence of the 3' deoxy-terminator nucleotide 3'dATP, which promotes the incorporation of mismatched nucleotides (leading to U:C, U:G, U:U, C:U, and A:C base pairs). We find that the nsp10-nsp14 heterodimer is unable to degrade RNA products lacking free 2'OH or 3'OH ribose groups. Our results suggest the potential use of 3' deoxy-terminator nucleotides in RNA-derived oligonucleotide inhibitors as antivirals against SARS-CoV-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。