Fucoidan Ameliorates Ferroptosis in Ischemia-reperfusion-induced Liver Injury through Nrf2/HO-1/GPX4 Activation

褐藻糖胶通过激活 Nrf2/HO-1/GPX4 改善缺血再灌注引起的肝损伤中的铁死亡

阅读:5
作者:Jing-Jing Li, Wei-Qi Dai, Wen-Hui Mo, Wen-Qiang Xu, Yue-Yue Li, Chuan-Yong Guo, Xuan-Fu Xu

Aims

Liver ischemia-reperfusion (IR) injury is a common pathological process in liver surgery. Ferroptosis, which is closely related to lipid peroxidation, has recently been confirmed to be involved in the pathogenesis of IR injury. However, the development of drugs that regulate ferroptosis has been slow, and a complete understanding of the mechanisms underlying ferroptosis has not yet been achieved. Fucoidan (Fu) is a sulfated polysaccharide that has attracted research interest due to its advantages of easy access and wide biological activity.

Background and aims

Liver ischemia-reperfusion (IR) injury is a common pathological process in liver surgery. Ferroptosis, which is closely related to lipid peroxidation, has recently been confirmed to be involved in the pathogenesis of IR injury. However, the development of drugs that regulate ferroptosis has been slow, and a complete understanding of the mechanisms underlying ferroptosis has not yet been achieved. Fucoidan (Fu) is a sulfated polysaccharide that has attracted research interest due to its advantages of easy access and wide biological activity.

Conclusions

Fucoidan inhibited ferroptosis in liver IR injury via the Nrf2/HO-1/GPX4 axis.

Methods

In this study, we established models of IR injury using erastin as an activator of ferroptosis, with the ferroptosis inhibitor ferrostatin-1 (Fer-1) as the control. We clarified the molecular mechanism of fucoidan in IR-induced ferroptosis by determining lipid peroxidation levels, mitochondrial morphology, and key pathways in theta were involved.

Results

Ferroptosis was closely related to IR-induced hepatocyte injury. The use of fucoidan or Fer-1 inhibited ferroptosis by eliminating reactive oxygen species and inhibiting lipid peroxidation and iron accumulation, while those effects were reversed after treatment with erastin. Iron accumulation, mitochondrial membrane rupture, and active oxygen generation related to ferroptosis also inhibited the entry of nuclear factor erythroid 2-related factor 2 (Nrf2) into the nucleus and reduced downstream heme oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPX4) protein levels. However, fucoidan pretreatment produced adaptive changes that reduced irreversible cell damage induced by IR or erastin. Conclusions: Fucoidan inhibited ferroptosis in liver IR injury via the Nrf2/HO-1/GPX4 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。