Continuous Production of Highly Tuned Silk/Calcium-Based Composites: Exploring New Pathways for Skin Regeneration

连续生产高度优化的丝/钙基复合材料:探索皮肤再生的新途径

阅读:7
作者:Anabela Veiga, Rui Magalhães, Marta M Duarte, Juliana R Dias, Nuno M Alves, Ana Rita Costa-Pinto, Filipa Castro, Fernando Rocha, Ana L Oliveira

Abstract

Calcium plays an important role in barrier function repair and skin homeostasis. In particular, calcium phosphates (CaPs) are well established materials for biomedical engineering due to their biocompatibility. To generate biomaterials with a more complete set of biological properties, previously discarded silk sericin (SS) has been recovered and used as a template to grow CaPs. Crucial characteristics for skin applications, such as antibacterial activity, can be further enhanced by doping CaPs with cerium (Ce) ions. The effectiveness of cell attachment and growth on the materials highly depends on their morphology, particle size distribution, and chemical composition. These characteristics can be tailored through the application of oscillatory flow technology, which provides precise mixing control of the reaction medium. Thus, in the present work, CaP/SS and CaP/SS/Ce particles were fabricated for the first time using a modular oscillatory flow plate reactor (MOFPR) in a continuous mode. Furthermore, the biological behavior of both these composites and of previously produced pure CaPs was assessed using human dermal fibroblasts (HDFs). It was demonstrated that both CaP based with plate-shaped nanoparticles and CaP-SS-based composites significantly improved cell viability and proliferation over time. The results obtained represent a first step towards the reinvention of CaPs for skin engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。