Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient reduction

母亲营养适度减少的幼年狒狒后代出现胰岛素抵抗

阅读:6
作者:Jaehyek Choi, Cun Li, Thomas J McDonald, Anthony Comuzzie, Vicki Mattern, Peter W Nathanielsz

Abstract

Developmental programming of postnatal pancreatic β-cell and peripheral insulin function by maternal nutrient reduction (MNR) has been extensively investigated in rodents and sheep, but no data exist from nonhuman primate offspring of MNR mothers. We hypothesized that moderate levels of MNR would result in developmental programming of postnatal β-cell function and peripheral insulin sensitivity that lead to emergence of a prediabetic state prior to puberty. Prepregnancy phenotype of 18 nonpregnant baboons was matched. During pregnancy and lactation 12 mothers ate chow ad libitum (controls), while six ate 70% of chow consumed by controls (weight-adjusted MNR). Weaned offspring ate normal chow. At 3.5 ± 0.18 yr (mean ± SE) in an intravenous glucose tolerance test, conscious, tethered MNR juvenile offspring (2 females and 4 males) showed increased fasting glucose (P < 0.04), fasting insulin (P < 0.04), and insulin area under the curve (AUC; P < 0.01) compared with controls (8 females and 4 males). Insulin AUC also increased following an arginine challenge (P < 0.02). Baseline homeostatic model assessment insulin β-cell sensitivity was greater in MNR offspring than controls (P < 0.03). In a hyperinsulinemic, euglycemic clamp, the glucose disposal rate decreased 26% in MNR offspring. Changes observed were not sex dependent. MNR in pregnancy and lactation programs offspring metabolic responses, increasing insulin resistance and β-cell responsiveness, resulting in emergence of an overall phenotype that would predispose to later life type-2 diabetes, especially, should other dietary challenges such as a Westernized diet be experienced.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。