Spatial memory in Alzheimer's disease 5XFAD mice is enhanced by XPO1 inhibitor KPT-330

XPO1 抑制剂 KPT-330 可增强阿尔茨海默病 5XFAD 小鼠的空间记忆

阅读:9
作者:Shi Quan Wong, Adia Ouellette, Avery McNamara, Rachel A Tam, Alexander Alexandrov, Acacia Nawrocik-Madrid, Jesus J Sanchez, Brett C Ginsburg, Arturo A Andrade, Louis R Lapierre

Abstract

The proteostatic decline in Alzheimer's disease is well established and improvement in proteostasis could potentially delay cognitive impairment. One emerging entry point to modulate proteostasis is the regulation of nucleo-cytoplasmic partitioning of proteins across the nuclear pore via karyopherins. The nuclear exportin XPO1 is a key regulator of proteostasis by driving the assembly of ribosomes and by modulating the process of autophagy. We recently found that XPO1 inhibitor KPT-330 (Selinexor), an FDA approved drug against multiple myelomas, enhances proteostasis, leading to benefits in models of neurodegenerative diseases in C. elegans and Drosophila. Here, we find that KPT-330 increases autophagy in murine neuronal cells and improves spatial memory performance in a murine model of Alzheimer's disease (5XFAD). Unexpectedly, general amyloid deposition in several brain regions was significantly increased by KPT-330, but specific regions, especially the thalamus, displayed significantly lower deposition, suggesting that XPO1 inhibition has regional-specific effects on proteostasis and amyloid plaque formation. Altogether, we conclude that XPO1 inhibition can improve cognition via spatially-specific reductions in amyloid deposition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。