Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation

肿瘤抑制蛋白 p53 在酪氨酸 327 位点的硝化促进 p53 寡聚化和活化

阅读:7
作者:Vasily A Yakovlev, Alexander S Bayden, Paul R Graves, Glen E Kellogg, Ross B Mikkelsen

Abstract

Previous studies demonstrate that nitric oxide (NO) promotes p53 transcriptional activity by a classical DNA damage responsive mechanism involving activation of ATM/ATR and phosphorylation of p53. These studies intentionally used high doses of NO donors to achieve the maximum DNA damage. However, lower concentrations of NO donors also stimulate rapid and unequivocal nuclear retention of p53 but apparently do not require ATM/ATR-dependent p53 phosphorylation or total p53 protein accumulation. To identify possible mechanisms for p53 activation at low NO levels, the role of Tyr nitration in p53 activation was evaluated. Low concentrations of the NO donor, DETA NONOate (<200 microM), exclusively nitrate Tyr327 within the tetramerization domain promoting p53 oligomerization, nuclear accumulation, and increased DNA-binding activity without p53 Ser15 phosphorylation. Molecular modeling indicates that nitration of one Tyr327 stabilizes the dimer by about 2.67 kcal mol(-1). Significant quantitative and qualitative differences in the patterns of p53-target gene modulation by low (50 microM), non-DNA-damaging and high (500 microM), DNA-damaging NO donor concentrations were shown. These results demonstrate a new posttranslational mechanism for modulating p53 transcriptional activity responsive to low NO concentrations and independent of DNA damage signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。