Hybrid Caffeic Acid-Based DHFR Inhibitors as Novel Antimicrobial and Anticancer Agents

混合咖啡酸基 DHFR 抑制剂作为新型抗菌和抗癌剂

阅读:5
作者:Renu Sehrawat, Ritu Pasrija, Priyanka Rathee, Deepika Kumari, Anurag Khatkar, Esra Küpeli Akkol, Eduardo Sobarzo-Sánchez

Abstract

A novel series of 1,2,4-triazole analogues of caffeic acid was designed, synthesized, characterized, and assessed for their capacity to inhibit DHFR, as well as their anticancer and antimicrobial properties. A molecular docking analysis was conducted on DHFR, utilizing PDB IDs 1U72 and 2W9S, aiming to design anticancer and antimicrobial drugs, respectively. Among all the synthesized derivatives, compound CTh7 demonstrated the highest potency as a DHFR inhibitor, with an IC50 value of 0.15 μM. Additionally, it exhibited significant cytotoxic properties, with an IC50 value of 8.53 µM. The molecular docking analysis of the CTh7 compound revealed that it forms strong interactions with key residues of homo sapiens DHFR such as Glu30, Phe34, Tyr121, Ile16, Val115, and Phe31 within the target protein binding site and displayed excellent docking scores and binding energy (-9.9; -70.38 kcal/mol). Additionally, synthesized compounds were screened for antimicrobial properties, revealing significant antimicrobial potential against bacterial strains and moderate effects against fungal strains. Specifically, compound CTh3 exhibited notable antibacterial efficacy against Staphylococcus aureus (MIC = 5 µM). Similarly, compound CTh4 demonstrated significant antibacterial activity against both Escherichia coli and Pseudomonas aeruginosa, with MIC values of 5 µM for each. A docking analysis of the most active antimicrobial compound CTh3 revealed that it forms hydrogen bonds with Thr121 and Asn18, a π-cation bond with Phe92, and a salt bridge with the polar residue Asp27.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。