Sexual morph specialisation in a trioecious nematode balances opposing selective forces

三体线虫的性形态特化平衡了相反的选择力量

阅读:4
作者:Sally Adams, Prachi Pathak, Maike Kittelmann, Alun R C Jones, Eamonn B Mallon, Andre Pires-daSilva

Abstract

The coexistence of different mating strategies, whereby a species can reproduce both by selfing and outcrossing, is an evolutionary enigma. Theory predicts two predominant stable mating states: outcrossing with strong inbreeding depression or selfing with weak inbreeding depression. As these two mating strategies are subject to opposing selective forces, mixed breeding systems are thought to be a rare transitory state yet can persist even after multiple speciation events. We hypothesise that if each mating strategy plays a distinctive role during some part of the species life history, opposing selective pressures could be balanced, permitting the stable co-existence of selfing and outcrossing sexual morphs. In this scenario, we would expect each morph to be specialised in their respective roles. Here we show, using behavioural, physiological and gene expression studies, that the selfing (hermaphrodite) and outcrossing (female) sexual morphs of the trioecious nematode Auanema freiburgensis have distinct adaptations optimised for their different roles during the life cycle. A. freiburgensis hermaphrodites are known to be produced under stressful conditions and are specialised for dispersal to new habitat patches. Here we show that they exhibit metabolic and intestinal changes enabling them to meet the cost of dispersal and reproduction. In contrast, A. freiburgensis females are produced in favourable conditions and facilitate rapid population growth. We found that females compensate for the lack of reproductive assurance by reallocating resources from intestinal development to mate-finding behaviour. The specialisation of each mating system for its role in the life cycle could balance opposing selective forces allowing the stable maintenance of both mating systems in A. freiburgensis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。