Enzymatic Synthesis of α-Glucosyl-Baicalin through Transglucosylation via Cyclodextrin Glucanotransferase in Water

水中环糊精葡聚糖转移酶催化合成 α-葡萄糖基黄芩苷

阅读:5
作者:Carole Lambert, Perrine Lemagnen, Eglantine Don Simoni, Jane Hubert, Alexis Kotland, Chantal Paulus, Audrey De Bizemont, Sylvie Bernard, Anne Humeau, Daniel Auriol, Romain Reynaud

Abstract

Baicalin is a biologically active flavone glucuronide with poor water solubility that can be enhanced via glucosylation. In this study, the transglucosylation of baicalin was successfully achieved with CGTases from Thermoanaerobacter sp. and Bacillus macerans using α-cyclodextrin as a glucosyl donor. The synthesis of baicalin glucosides was optimized with CGTase from Thermoanaerobacter sp. Enzymatically modified baicalin derivatives were α-glucosylated with 1 to 17 glucose moieties. The two main glucosides were identified as Baicalein-7-O-α-D-Glucuronidyl-(1→4')-O-α-D-Glucopyranoside (BG1) and Baicalein-7-O-α-D-Glucuronidyl-(1→4')-O-α-D-Maltoside (BG2), thereby confirming recent findings reporting that glucuronyl groups are acceptors of this CGTase. Optimized conditions allowed for the attainment of yields above 85% (with a total glucoside content higher than 30 mM). BG1 and BG2 were purified via centrifugal partition chromatography after an enrichment through deglucosylation with amyloglucosidase. Transglucosylation increased the water solubility of BG1 by a factor of 188 in comparison to that of baicalin (molar concentrations), while the same value for BG2 was increased by a factor of 320. Finally, BG1 and BG2 were evaluated using antioxidant and anti-glycation assays. Both glucosides presented antioxidant and anti-glycation properties in the same order of magnitude as that of baicalin, thereby indicating their potential biological activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。