Microwave radiation induces neuronal autophagy through miR-30a-5p/AMPKα2 signal pathway

微波辐射通过miR-30a-5p/AMPKα2信号通路诱导神经元自噬

阅读:10
作者:Yanhui Hao #, Wenchao Li #, Hui Wang, Jing Zhang, Haoyu Wang, Ji Dong, Binwei Yao, Xinping Xu, Li Zhao, Ruiyun Peng

Abstract

The potential health hazards of microwaves have attracted much more attention. Our previous study found that 2856 MHz microwave radiation damaged synaptic plasticity and activated autophagy in neurons. However, the mechanisms underlying microwave-induced autophagy were still unclear. In the present study, we established neuronal damage models by exposing rat hippocampal neurons and rat adrenal pheochromocytoma (PC12) cell-derived neuron-like cells to 30 mW/cm2 microwaves, which resulted in miR-30a-5p ('miR-30a' for short) down-regulation and autophagy activation in vivo and in vitro. Bioinformatics analysis was conducted, and Beclin1, Prkaa2, Irs1, Pik3r2, Rras2, Ddit4, Gabarapl2 and autophagy-related gene 12 (Atg12) were identified as potential downstream genes of miR-30a involved in regulating autophagy. Based on our previous findings that microwave radiation could lead to abnormal energy metabolism in neurons, Prkaa2, encoding adenosine 5'-monophosphate-activated protein kinase (AMPK) α2 (AMPKα2, an important catalytic subunit of energy sensor AMPK), was selected for further analysis. Dual-luciferase reporter assay results showed that Prkaa2 was a downstream gene of miR-30a. Moreover, microwave radiation increased the expression of AMPKα2 and the phosphorylation of AMPKα (Thr172) both in vivo and in vitro. The transfection of PC12 cells with miR-30a mimics increased miR-30a levels, reduced AMPKα2 expression, suppressed AMPKα (Thr172) phosphorylation, and inhibited autophagy occurrence in neuron-like cells. Importantly, miR-30a overexpression abolished microwave-activated autophagy and inhibited microwave-induced AMPKα2 up-regulation and AMPKα (Thr172) phosphorylation. In conclusion, microwave radiation promoted the occurrence of autophagy in neurons through the miR-30a/AMPKα2 signal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。