Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents

不同酸酐固化剂环氧树脂热机械性能的分子动力学模拟与实验研究

阅读:12
作者:Kexin Fu, Qing Xie, Fangcheng Lü, Qijun Duan, Xinjie Wang, Quansheng Zhu, Zhengyong Huang

Abstract

An investigation of the relationship between the microstructure parameters and thermomechanical properties of epoxy resin can provide a scientific basis for the optimization of epoxy systems. In this paper, the thermomechanical properties of diglycidyl ether of bisphenol A (DGEBA)/methyl tetrahydrophthalic anhydride (MTHPA) and DGEBA/nadic anhydride (NA) were calculated and tested by the method of molecular dynamics (MD) simulation combined with experimental verification. The effects of anhydride curing agents on the thermomechanical properties of epoxy resin were investigated. The results of the simulation and experiment showed that the thermomechanical parameters (glass transition temperature (Tg) and Young's modulus) of the DGEBA/NA system were higher than those of the DGEBA/MTHPA system. The simulation results had a good agreement with the experimental data, which verified the accuracy of the crosslinking model of epoxy resin cured with anhydride curing agents. The microstructure parameters of the anhydride-epoxy system were analyzed by MD simulation, including bond-length distribution, synergy rotational energy barrier, cohesive energy density (CED) and fraction free volume (FFV). The results indicated that the bond-length distribution of the MTHPA and NA was the same except for C-C bonds. Compared with the DGEBA/MTHPA system, the DGEBA/NA system had a higher synergy rotational energy barrier and CED, and lower FFV. It can be seen that the slight change of curing agent structure has a significant effect on the synergy rotational energy barrier, CED and FFV, thus affecting the Tg and modulus of the system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。