Biomimetic Versatile Anisotropic, Electroactive Cellulose Hydrogel Scaffolds Tailored from Fern Stem Serving as Nerve Conduit and Cardiac Patch

仿生多功能各向异性、电活性纤维素水凝胶支架,由蕨类植物茎制成,可用作神经导管和心脏补片

阅读:13
作者:Qinghui Liang, Shuhui Chen, Shaofeng Hua, Weihong Jiang, Jiamian Zhan, Chunyi Pu, Rurong Lin, Yutong He, Honghao Hou, Xiaozhong Qiu

Abstract

Peripheral nerve injury (PNI) and myocardial infarction (MI) are the two most clinically common soft excitable tissue injuries. Both nerve and cardiac tissues exhibit structural anisotropy and electrophysiological activity, providing a wide range of biophysical cues for cell and tissue repair. However, balancing microstructural anisotropy, electroactivity, and biocompatibility is challenging. To address this issue, Dicranopteris linearis (D. linearis) is proposed as a low-perceived value fern plant. Moreover, to enhance its usefulness, it can be designed into a tubular structure and a lamellar structure to bridge the damaged tissue. Therefore, a robust yet simple top-down approach is proposed to designing and fabricating the desired biomimetic versatile hydrogels orienting from the D. linearis to customize for different soft excitable tissue repair applications. These anisotropic electroactive hydrogels performed well as nerve guidance conduits (NGC) and engineered cardiac patches (ECP) in the repair of PNI and MI, respectively. Two birds, one stone. Accordingly, the biomimetic strategy of D. linearis to NGC and D. linearis to ECP is first proposed, opening a new horizon for constructing tissue engineering using natural sources.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。