Bioactive Self-Assembled Nanoregulator Enhances Hematoma Resolution and Inhibits Neuroinflammation in the Treatment of Intracerebral Hemorrhage

生物活性自组装纳米调节器增强血肿消散并抑制脑出血治疗中的神经炎症

阅读:6
作者:Wenyan Yu, Chengyuan Che, Yi Yang, Yuzhen Zhao, Junjie Liu, Aibing Chen, Jinjin Shi

Abstract

Hematoma and secondary neuroinflammation continue to pose a significant challenge in the clinical treatment of intracerebral hemorrhage (ICH). This study describes a nanoregulator formed through the self-assembly of Mg2+ and signal regulatory protein α (SIRPα) DNAzyme (SDz), aimed at enhancing hematoma resolution and inhibiting neuroinflammation in the treatment of ICH. The structure of SDz collapses in response to the acidic endo/lysosomal microenvironment of microglia, releasing Mg2+ and the SIRPα DNAzyme. The Mg2+ then acts as a cofactor to activate the SIRPα DNAzyme. By blocking the CD47-SIRPα signaling pathway, microglia can rapidly and effectively phagocytose red blood cells (RBCs), thereby promoting the clearance of the hematoma. Simultaneously, Mg2+ reset the microglia to the M2 phenotype by inhibiting the MYD88/MAPK/NF-κB signaling pathway, thereby modulating the inflammatory microenvironment of ICH. This co-delivery and synergistic strategy resulted in a significant reduction in hematoma size, decreasing from 11.90 to 5.84 mm3, and promoted recovery from ICH with minimal systemic side effects. This simple yet highly effective nanoplatform, which involves complex synergistic mechanisms, proves to be effective for ICH therapy and holds great promise for introducing novel perspectives into clinical and translational approaches for ICH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。