Nucleation of the destruction complex on the centrosome accelerates degradation of β-catenin and regulates Wnt signal transmission

破坏复合物在着丝粒上的成核加速β-catenin的降解并调节Wnt信号传递

阅读:6
作者:Ryan S Lach, Chongxu Qiu, Erfan Zeyaei Kajbaf, Naomi Baxter, Dasol Han, Alex Wang, Hannah Lock, Orlando Chirikian, Beth Pruitt, Maxwell Z Wilson

Abstract

Wnt signal transduction is controlled by the destruction complex (DC), a condensate comprising scaffold proteins and kinases that regulate β-catenin stability. Overexpressed DC scaffolds undergo liquid-liquid phase separation (LLPS), but DC mesoscale organization at endogenous expression levels and its role in β-catenin processing were previously unknown. Here, we find that DC LLPS is nucleated by the centrosome. Through a combination of CRISPR-engineered custom fluorescent tags, finite element simulations, and optogenetic tools that allow for manipulation of DC concentration and multivalency, we find that centrosomal nucleation drives processing of β-catenin by colocalizing DC components to a single reaction crucible. Enriching GSK3β partitioning on the centrosome controls β-catenin processing and prevents Wnt-driven embryonic stem cell differentiation to mesoderm. Our findings demonstrate the role of nucleators in controlling biomolecular condensates and suggest tight integration between Wnt signal transduction and the cell cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。