A Bioinspired Self-Healing Conductive Hydrogel Promoting Peripheral Nerve Regeneration

一种受生物启发的自修复导电水凝胶可促进周围神经再生

阅读:7
作者:Hongyun Xuan, Shuyuan Wu, Yan Jin, Shuo Wei, Feng Xiong, Ye Xue, Biyun Li, Yumin Yang, Huihua Yuan

Abstract

The development of self-healing conductive hydrogels is critical in electroactive nerve tissue engineering. Typical conductive materials such as polypyrrole (PPy) are commonly used to fabricate artificial nerve conduits. Moreover, the field of tissue engineering has advanced toward the use of products such as hyaluronic acid (HA) hydrogels. Although HA-modified PPy films are prepared for various biological applications, the cell-matrix interaction mechanisms remain poorly understood; furthermore, there are no reports on HA-modified PPy-injectable self-healing hydrogels for peripheral nerve repair. Therefore, in this study, a self-healing electroconductive hydrogel (HASPy) from HA, cystamine (Cys), and pyrrole-1-propionic acid (Py-COOH), with injectability, biodegradability, biocompatibility, and nerve-regenerative capacity is constructed. The hydrogel directly targets interleukin 17 receptor A (IL-17RA) and promotes the expression of genes and proteins relevant to Schwann cell myelination mainly by activating the interleukin 17 (IL-17) signaling pathway. The hydrogel is injected directly into the rat sciatic nerve-crush injury sites to investigate its capacity for nerve regeneration in vivo and is found to promote functional recovery and remyelination. This study may help in understanding the mechanism of cell-matrix interactions and provide new insights into the potential use of HASPy hydrogel as an advanced scaffold for neural regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。