N-terminal acetylation of transcription factor LIP induces immune therapy resistance via suppression of PD-L1 expression in non-small cell lung cancer

转录因子 LIP 的 N 端乙酰化通过抑制非小细胞肺癌中的 PD-L1 表达诱导免疫治疗耐药性

阅读:11
作者:Xiang He #, Yongshuo Liu #, Xing Gao #, Feiyu Tang, Yuxi Tian, Siyuan Gong, Jia Shen, Aimin Wang, Lunquan Sun, Wensheng Wei, Liang Weng2

Background

Programmed death-1 (PD-1) checkpoint blockade has revolutionized cancer therapy, yet its clinical success is confined to a subset of patients, underscoring the urgent need to understand the molecular underpinnings of programmed cell death ligand 1 (PD-L1) expression to combat immunotherapy resistance.

Conclusions

Identifying CEBPB, especially the LIP isoform, as a pivotal regulator of PD-L1 expression sheds light on the mechanisms behind PD-1 blockade resistance in NSCLC. Our findings suggest that modulating LIP's function or its molecular interactions might offer a novel approach to boosting the efficacy of immunotherapies.

Methods

Employing CRISPR/Cas9 screening, we identified key regulators of PD-L1 in non-small cell lung cancer (NSCLC) cells, focusing on the transcription factor CEBPB and its isoform liver-enriched inhibitory protein (LIP). Through chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we explored the interaction between LIP and basic-helix-loop-helix E22 (BHLHE22) in controlling PD-L1 transcription. We also used immunofluorescence and NBD-CI assays to examine how N-terminal acetylation affects LIP's subcellular localization. The impact of LIP on tumor growth was assessed via subcutaneous tumorigenicity assays, while immunohistochemistry and immunofluorescence were used to analyze LIP-induced alterations in the tumor immune microenvironment.

Results

Our research indicates that CEBPB, particularly its LIP isoform, significantly suppresses PD-L1 expression in NSCLC cells. This suppression is contingent on LIP's N-terminal acetylation by the N-terminal acetyltransferase A complex, which facilitates LIP's nuclear entry and interaction with BHLHE22. This interaction leads to the formation of a co-repressor complex at the PD-L1 promoter, effectively reducing PD-L1 expression and enhancing the tumor immune response. Conclusions: Identifying CEBPB, especially the LIP isoform, as a pivotal regulator of PD-L1 expression sheds light on the mechanisms behind PD-1 blockade resistance in NSCLC. Our findings suggest that modulating LIP's function or its molecular interactions might offer a novel approach to boosting the efficacy of immunotherapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。