Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages

乳酸氧化促进结核分枝杆菌在人类巨噬细胞中的生长

阅读:6
作者:Sandra Billig, Marie Schneefeld, Claudia Huber, Guntram A Grassl, Wolfgang Eisenreich, Franz-Christoph Bange

Abstract

Mycobacterium tuberculosis (Mtb) uses alveolar macrophages as primary host cells during infection. In response to an infection, macrophages switch from pyruvate oxidation to reduction of pyruvate into lactate. Lactate might present an additional carbon substrate for Mtb. Here, we demonstrate that Mtb can utilize L-lactate as sole carbon source for in vitro growth. Lactate conversion is strictly dependent on one of two potential L-lactate dehydrogenases. A knock-out mutant lacking lldD2 (Rv1872c) was unable to utilize L-lactate. In contrast, the lldD1 (Rv0694) knock-out strain was not affected in growth on lactate and retained full enzymatic activity. On the basis of labelling experiments using [U-13C3]-L-lactate as a tracer the efficient uptake of lactate by Mtb and its conversion into pyruvate could be demonstrated. Moreover, carbon flux from lactate into the TCA cycle, and through gluconeogenesis was observed. Gluconeogenesis during lactate consumption depended on the phosphoenolpyruvate carboxykinase, a key enzyme for intracellular survival, showing that lactate utilization requires essential metabolic pathways. We observed that the ΔlldD2 mutant was impaired in replication in human macrophages, indicating a critical role for lactate oxidation during intracellular growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。