Oncolytic vaccinia virus armed with anti-CD47 nanobody elicit potent antitumor effects on multiple tumor models via enhancing innate and adoptive immunity

携带抗 CD47 纳米抗体的溶瘤痘苗病毒通过增强先天和过继免疫力对多种肿瘤模型产生强大的抗肿瘤作用

阅读:4
作者:Zengpeng Li #, Mengyuan Li #, Liu Yang, Jie Chen, Qian Ye, Wenbin Qian, Shibing Wang

Conclusion

Overall, our findings highlight the therapeutic potential of OVV-αCD47nb for breast and colon cancer, and demonstrate its ability to modulate the immune cell profiles within tumors. This has established a rationale for further exploring OVV-αCD47nb as a potential therapy in the clinic.

Methods

To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb). We demonstrated the specific binding activity of αCD47nb secreted from the virus-infected cells to CD47 and that both secreted αCD47nb and OVV-αCD47nb blocked the "don't eat me" signal of macrophages.

Objective

Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).

Results

Intratumorally injected OVV-αCD47nb continuously releases the αCD47nb in tumor tissues, thereby conferring superior systemic activity against breast and colon tumor cells and prolonging survival compared with OVV control. Furthermore, treatment with OVV-αCD47nb also remodeled the TME, as shown by increased T cell infiltration, CD8+ T cell activation and tumor-associated macrophages polarization, significantly enhancing innate and adoptive immunity. Additionally, the inclusion of programmed cell death protein-1 inhibiting boosted the anticancer efficacy of OVV-αCD47nb and raised the full response rate in tumor-bearing animals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。