Potential Effect of Enzymatic Porcine Placental Hydrolysate (EPPH) to Improve Alcoholic Liver Disease (ALD) by Promoting Lipolysis in the Liver

酶法猪胎盘水解物 (EPPH) 通过促进肝脏脂肪分解对改善酒精性肝病 (ALD) 的潜在作用

阅读:5
作者:Hak Yong Lee, Young Mi Park, Dong Yeop Shin, Kwang Hyun Park, Min Ju Kim, Sun Myung Yoon, Keun Nam Kim, Hye Jeong Yang, Min Jung Kim, Soo-Cheol Choi, In-Ah Lee

Abstract

Alcoholic liver disease is associated with the production of highly reactive free radicals by ethanol and its metabolites. Free radicals not only induce liver oxidation and damage tissues, but also stimulate an inflammatory response in hepatocytes, leading to severe liver disease. In order to improve alcoholic liver disease, enzymatic porcine placenta hydrolysate was studied by exploring various materials. Enzymatic porcine placenta hydrolysate (EPPH) contains various amino acids, peptides, and proteins, and is used as a useful substance in the body. In this study, changes were confirmed in indicators related to the antioxidant efficacy of EPPH in vitro and in vivo. EPPH inhibits an EtOH-induced decrease in superoxide dismutase and catalase activity through inhibition of free radicals without endogenous cytotoxicity. EPPH has been observed to have a partial effect on common liver function factors such as liver weight, ALT, AST, ALP, and GGT. In addition, EPPH affected changes in fat regulators and inflammatory cytokines in blood biochemical assays. It was confirmed that EPPH was involved in fat metabolism in hepatocytes by regulating PPARα in an alcoholic liver disease animal model. Therefore, EPPH strongly modulates Bcl-2 and BAX involved in apoptosis, thereby exhibiting cytochrome P450 (CYP)-inhibitory effects in alcoholic liver disease cells. As a result, this study confirmed that EPPH is a substance that can help liver health by improving liver disease in an alcoholic liver disease animal model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。